Growth Mixture Modeling and Related Techniques for Longitudinal Data
نویسنده
چکیده
This chapter gives an overview of recent advances in latent variable analysis. Emphasis is placed on the strength of modeling obtained by using a flexible combination of continuous and categorical latent variables. To focus the discussion and make it manageable in scope, analysis of longitudinal data using growth models will be considered. Continuous latent variables are common in growth modeling in the form of random effects that capture individual variation in development over time. The use of categorical latent variables in growth modeling is, in contrast, perhaps less familiar, and new techniques have recently emerged. The aim of this chapter is to show the usefulness of growth model extensions using categorical latent variables. The discussion also has implications for latent variable analysis of cross-sectional data. The chapter begins with two major parts corresponding to continuous outcomes versus categorical outcomes. Within each part, conventional modeling using continuous latent variables will be described
منابع مشابه
An introduction to latent variable mixture modeling (part 2): longitudinal latent class growth analysis and growth mixture models.
OBJECTIVE Pediatric psychologists are often interested in finding patterns in heterogeneous longitudinal data. Latent variable mixture modeling is an emerging statistical approach that models such heterogeneity by classifying individuals into unobserved groupings (latent classes) with similar (more homogenous) patterns. The purpose of the second of a 2-article set is to offer a nontechnical int...
متن کاملAnalyzing criminal trajectory profiles: Bridging multilevel and group-based approaches using growth mixture modeling
Over the last 25 years, a life-course perspective on criminal behavior has assumed increasing prominence in the literature. This theoretical development has been accompanied by changes in the statistical models used to analyze criminological data. There are two main statistical modeling techniques currently used to model longitudinal data. These are growth curve models and latent class growth m...
متن کاملAn Introduction to Latent Class Growth Analysis and Growth Mixture Modeling
In recent years, there has been a growing interest among researchers in the use of latent class and growth mixture modeling techniques for applications in the social and psychological sciences, in part due to advances in and availability of computer software designed for this purpose (e.g., Mplus and SAS Proc Traj). Latent growth modeling approaches, such as latent class growth analysis (LCGA) ...
متن کاملGrowth mixture modeling with non-normal distributions.
A limiting feature of previous work on growth mixture modeling is the assumption of normally distributed variables within each latent class. With strongly non-normal outcomes, this means that several latent classes are required to capture the observed variable distributions. Being able to relax the assumption of within-class normality has the advantage that a non-normal observed distribution do...
متن کاملGrowth mixture models in longitudinal research
Latent growth curve models as structural equation models are extensively discussed in various research fields (Curran and Muthén in Am. J. Community Psychol. 27:567–595, 1999; Duncan et al. in An introduction to latent variable growth curve modeling. Concepts, issues and applications, 2nd edn., Lawrence Earlbaum, Mahwah, 2006; Muthén and Muthén in Alcohol. Clin. Exp. Res. 24(6):882–891, 2000a; ...
متن کامل